Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sergei A. Kotlyar, ${ }^{\text {a }}$ Roman I.

 Zubatyuk, ${ }^{\text {b }}$ * Oleg V. Shishkin, ${ }^{\text {b }}$ Gennady N. Chuprin, ${ }^{\text {a }}$ Andrey V. Kiriyak ${ }^{\text {a }}$ and Gerbert L. Kamalov ${ }^{\text {a }}$${ }^{\text {a }}$ A. V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 86 Lustdorfskaya doroga, Odessa 65080, Ukraine, and ${ }^{\mathbf{b}}$ Institute for Scintillation Materials, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkov 61001, Ukraine

Correspondence e-mail:
roman@xray.isc.kharkov.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
R factor $=0.082$
$w R$ factor $=0.253$
Data-to-parameter ratio $=15.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
$\left[\mathrm{K}\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}\right)\right]\left[\mathrm{CrClO}_{3}\right]$, contains a K^{+}cation, complexed with one crown ether molecule, and a chlorochromate anion. The cation is located within the mean plane of the ether O atoms, approximately in the centre of the macrocyclic cavity, and bonded to them with $\mathrm{K}-\mathrm{O}$ distances in the range 2.785 (5)2.836 (5) \AA. In the crystal structure, polymeric chains of the type $\mathrm{K}^{+}-\mathrm{CrO}_{3}^{-}-\mathrm{K}^{+}$are formed.

Comment

Recently, we have synthesized the complexes of cis-cyclo-hexano-12-crown-4 in the ratio 2:1, cis-cyclohexano-18-crown6 and cis-syn-cis-dicyclohexano-18-crown-6 in the ratio 1:1, with potassium chlorochromate, and reported their crystal structures (Kotlyar, Zubatyuk, Shishkin et al., 2004a,b; Kotlyar, Zubatyuk, Zhigalko et al., 2004). We have established that 18 -crown- 6 , similar to the above-mentioned crown ethers (CE), in a solution of potassium dichromate and hydrochloric acid at room temperature, where the dichromate-chlorochromate equilibrium is taking place, immediately and almost quantitatively forms a stable crystalline complex with only one component of the equilibrium mixture, namely potassium chlorochromate, $\mathrm{KCrO}_{3} \mathrm{Cl}$. We now report the crystal structure of the title complex, (I) (Fig. 1), of 18-crown-6 with potassium chlorochromate, obtained in the ratio 1:1.

(I)

The crystal structure of the title compound, (1,4,7,10,13,16hexaoxacyclooctadecane $-\kappa^{6} O$)potassium chlorochromate(VI),

(18-Crown-6)potassium chlorochromate

Figure 1
A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
$\mathrm{K}^{+}-\mathrm{CrO}_{3}^{-}-\mathrm{K}^{+}$polymeric chains in the crystal structure of (I). H atoms have been omitted for clarity.

The macrocycle of (I) has a crown-like conformation. The O atoms are oriented toward the centre of the CE cavity and $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ fragments have alternate $+s c$ and $-s c$ conformations (Table 1). The cation is located approximately in the centre of this ring, lying within the mean plane of the ether O atoms [deviation only 0.004 (3) \AA] and forming almost equivalent bonds to them (Table 1). Each cation is also bonded to the O atoms of two anions, leading to the formation of $\mathrm{K}^{+}-\mathrm{CrO}_{3}^{-}-\mathrm{K}^{+}$polymeric chains along the a axis of the crystal structure (Fig. 2). However, the $\mathrm{K}-\mathrm{O}$ bonds to the anion are noticeably longer than those to the CE, especially for the anion at the symmetry position $\left(x-\frac{1}{2}, y, \frac{1}{2}-z\right)$, with lengths up to 3.52 (1) \AA (Table 1). The weak bonding of the anion results in large-amplitude thermal motion of its O atoms (due to rotation around the $\mathrm{Cr} 1-\mathrm{Cl} 1$ bond) at room temperature (Fig. 1).

In the polymeric chains of (I), the mean planes of two neighbouring CE molecules form an angle of 47.44 (5) ${ }^{\circ}$. In the crystal structure, these chains form a herring-bone pattern (Fig. 3).

Figure 3
A packing diagram for (I), viewed along the b axis, showing the herringbone pattern of crown ether molecules.

Experimental

The title complex, (I), was prepared according to the procedure of Kotlyar, Zubatyuk, Shishkin et al. (2004a), from a solution of potassium dichromate $(4.41 \mathrm{~g}, 15 \mathrm{mmol})$ in distilled water, 13 M hydrochloric acid (10 ml) and 18-crown-6 $(3.96 \mathrm{~g}, 15 \mathrm{mmol})$ (yield $93 \%, 6.12 \mathrm{~g}$). Orange crystals of (I) suitable for X-ray investigation were obtained by evaporation of an acetone solution [m.p. 440-445 K (decomposed)]. Analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{ClCrKO}_{9}$: C 32.84, H 5.51, Cl 8.08, Cr 11.85\%; found: C 32.99, H 5.39, Cl 8.19, Cr 11.77%. The crystals are soluble in dichloromethane, dimethyl sulfoxide, dimethylformamide and chloroform, weakly soluble in acetone, and slightly soluble in ethyl acetate, benzene and toluene.

Crystal data

$\left[\mathrm{K}\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}\right)\right]\left[\mathrm{CrClO}_{3}\right]$
$M_{r}=438.86$
Orthorhombic, Pbca
$a=15.113$ (2) \AA
$b=15.692$ (2) A
$c=16.806$ (2) \AA
$V=3985.4(9) \AA^{3}$
$Z=8$
$D_{x}=1.463 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Siemens P3/PC diffractometer $\theta / 2 \theta$ scans
3465 measured reflections
3416 independent reflections
1518 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=25.1^{\circ}$

Mo $K \alpha$ radiation
Cell parameters from 24 reflections
$\theta=12-14^{\circ}$
$\mu=0.95 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, pale orange
$0.2 \times 0.2 \times 0.1 \mathrm{~mm}$

$$
h=0 \rightarrow 16
$$

$k=0 \rightarrow 18$
$l=0 \rightarrow 20$
2 standard reflections every 98 reflections intensity decay: 2%

Refinement

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

K1-O1	$2.804(5)$	$\mathrm{K} 1-\mathrm{O} 6$	$2.836(5)$
$\mathrm{K} 1-\mathrm{O} 2$	$2.785(5)$	$\mathrm{K} 1-\mathrm{O} 8$	$2.983(10)$
$\mathrm{K} 1-\mathrm{O} 3$	$2.800(5)$	$\mathrm{K} 1-\mathrm{O} 7^{\mathrm{i}}$	$3.522(14)$
$\mathrm{K} 1-\mathrm{O} 4$	$2.811(5)$	$\mathrm{K} 1-\mathrm{O} 9^{\mathrm{i}}$	$3.474(16)$
$\mathrm{K} 1-\mathrm{O} 5$	$2.815(4)$		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	$71.3(8)$	$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 5$	$-71.0(7)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 3$	$-69.4(9)$	$\mathrm{O} 5-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 6$	$67.4(8)$
$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 4$	$70.9(8)$	$\mathrm{O} 6-\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 1$	$-68.7(9)$

Symmetry code: (i) $x-\frac{1}{2}, y,-z+\frac{1}{2}$.
All H atoms were placed in calculated positions and included in the refinement in the riding-model approximation, with $\mathrm{C}-\mathrm{H}$
distance in the range $0.97-0.98 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The $\mathrm{Cr}-\mathrm{O}$ distances were restrained to 1.620 (5) \AA.

Data collection: P3 (Siemens, 1989); cell refinement: P3; data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kotlyar, S. A., Zubatyuk, R. I., Shishkin, O. V., Chuprin, G. N., Kiriyak, A. V. \& Kamalov, G. L. (2004a). Acta Cryst. E60, m907-m909.
Kotlyar, S. A., Zubatyuk, R. I., Shishkin, O. V., Chuprin, G. N., Kiriyak, A. V. \& Kamalov, G. L. (2004b). Acta Cryst. E60, m1015-m1016.
Kotlyar, S. A., Zubatyuk, R. I., Zhigalko, M. V., Shishkin, O. V., Chuprin, G. N., Kiriyak, A. V. \& Kamalov, G. L. (2004). Acta Cryst. E60, m1847-m1848. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1989). P3. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
Siemens (1991). XDISK and XP. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.

